Introduction

LEDs are current driven devices. It is relatively simple to drive several LEDs individually. However, as the number of LEDs increases, the amount of resources needed to operate these LEDs grows to an unmanageable level. As such, LEDs are often arranged in matrices in order to make efficient use of resources.

In a matrix format, LEDs are arranged in rows and columns. This arrangement is discussed in more detail later. What should be noted here is that the matrix arrangement demands that LEDs be driven in multiplex. The multiplex sequence inevitably requires more complex processing, but is more efficient compared to individually driving each LED.

This application note also describes how the brightness of each individual LED can be controlled in multiplex mode. This involves dividing the LED driving sequence into three levels in the time domain. The last section introduces several ICs that are widely used in driving LEDs.

This note is intended to support the design of messaging and video systems using LED tiles. However, the concepts and techniques introduced here apply to any LED matrix including arrays formed using discrete LEDs.

Basic Structure of an LED Matrix

Initially, discussion is confined to 4x4 matrices, as shown below in Figure 1. The underlying principle here is that each LED can be addressed by specifying its location in terms of rows and columns. For example, the top-left LED is addressed as (A,1) i.e., row A, column 1. This method of addressing also indicates the flow of electrical current. In order to turn LED (A,1) on, current is caused to flow from A to 1. If switches are attached to each port A to D and 1 to 4, then, to turn the top-left LED on, switches A and 1 are made to conduct. The other LEDs will not have any current flowing because either their row or column switch is non-conducting.

Figure 1 shows two different configurations. The difference is in the method that is used to drive the LEDs. With the common-row anode configuration, current sinks are attached to ports 1 to 4. With the common-row cathode, current sources are attached to ports 1 to 4.

This application note is especially relevant to these products and applications:
- Single color and bi-color tiles
- LED arrays (composed of LED lamps, chip LEDs, etc.)
- LED video screens
- Moving message panels

Figure 1 shows two different configurations. The difference is in the method that is used to drive the LEDs. With the common-row anode configuration, current sinks are attached to ports 1 to 4. With the common-row cathode, current sources are attached to ports 1 to 4.
Multiplexing an LED Matrix

Multiplexing is the technique employed to operate LED matrices. By multiplexing, only one row of the LED matrix is activated at any one time. This approach is required because one end of the LED (either the anode or the cathode) is tied to a single row. From Figure 2, we can see that if current is applied to both rows A and B at the same time, it becomes impossible to address an individual LED within those two rows.

Parallel drive of LEDs is discouraged because of “current-hogging.” This phenomenon occurs if the dynamic resistance of the LEDs in parallel differs by a large amount (see Application Brief D-007).

We will use the common-row anode configuration to illustrate the concepts of multiplexing.

The staircase sequence (A to D) shows that time division multiplex is employed here in Figure 3. Only one row is energized at any one time. During the period in which a given row is energized, the desired LEDs are lit by energizing the appropriate columns. Sometimes this process is known as scanning.

Basic Structure of a Driving System

Figure 4 only shows a section of the matrix. The driving scheme can be extended to very large arrays of LEDs. The maximum size depends on the maximum rate at which the electronics can distribute and process data. For a common-row cathode configuration, the driving system needs constant-current sources and sink drivers instead.

Brightness Control Via Pulse Width Modulation (PWM)

We know that the light output of an LED is dependent on the current flowing through it. However, that is not a recommended method of controlling brightness because we will need a very precise current source/sink. The preferred technique for brightness control is through pulse width modulation (PWM). This concept is illustrated in Figure 5.

However, the driving system shown in Figure 4 will activate an entire row at the same time. How do we control the brightness of each individual LED? The answer is to divide each scanning period into time slots. Thus, we now have a time domain hierarchy.
Brightness Control of an Individual LED

The PWM technique described here can be extended beyond the four grayscale system—the narrower the time slot, the finer the brightness control. It is limited by the switching time of the driving system, which in turn determines the minimum length of a time slot. LED switching time is not an issue since it is very short (several tens of ns).

Frames and Persistence of Vision

Frames here are defined as the final image on the display that is to be presented to the observer. Frames can be simple characters or pictures. Video works by presenting a set of frames so quickly that the observer does not perceive any discontinuity. The rate at which the frames are refreshed is termed the refresh frequency. If the frequency is above a certain threshold frequency, the observer does not notice any flickering. For LED displays, a refresh rate of above 60 Hz is recommended.

Persistence of vision is the human visual phenomenon that allows video images to be viewed without flicker. When the human visual system is presented with an image, that image continues to be perceived even though it is no longer in the visual field of the observer, albeit for a short time. This phenomenon thus enables flicker-free video.

Frames and Persistence of Vision

Frames here are defined as the final image on the display that is to be presented to the observer. Frames can be simple characters or pictures. Video works by presenting a set of frames so quickly that the observer does not perceive any discontinuity. The rate at which the frames are refreshed is termed the refresh frequency. If the frequency is above a certain threshold frequency, the observer does not notice any flickering. For LED displays, a refresh rate of above 60 Hz is recommended.

Persistence of vision is the human visual phenomenon that allows video images to be viewed without flicker. When the human visual system is presented with an image, that image continues to be perceived even though it is no longer in the visual field of the observer, albeit for a short time. This phenomenon thus enables flicker-free video.

Brightnes Control of an Individual LED

The PWM technique described here can be extended beyond the four grayscale system—the narrower the time slot, the finer the brightness control. It is limited by the switching time of the driving system, which in turn determines the minimum length of a time slot. LED switching time is not an issue since it is very short (several tens of ns).

Frames and Persistence of Vision

Frames here are defined as the final image on the display that is to be presented to the observer. Frames can be simple characters or pictures. Video works by presenting a set of frames so quickly that the observer does not perceive any discontinuity. The rate at which the frames are refreshed is termed the refresh frequency. If the frequency is above a certain threshold frequency, the observer does not notice any flickering. For LED displays, a refresh rate of above 60 Hz is recommended.

Persistence of vision is the human visual phenomenon that allows video images to be viewed without flicker. When the human visual system is presented with an image, that image continues to be perceived even though it is no longer in the visual field of the observer, albeit for a short time. This phenomenon thus enables flicker-free video.
Towards a Practical LED Display System

While the previous section discussed basic concepts, this section focuses on the construction of a practical display system. We begin by defining some of the terms used in this section. This is followed by a description of a typical display system. Finally, the details of each element of that system is discussed. It would be helpful to download the data sheets of the drivers mentioned here. The Appendices point to the on-line documentation store.

Terminology

1. Common line—see Figure 8.
2. Access line—see Figure 8.
3. Pixel/dot—pixel and dot refer to the same object (see Figure 9).
4. Refresh rate—the frequency of the images being displayed.
5. Brightness control—control of the overall brightness of the display.
6. Grayscale—control over the brightness of each LED in order to generate multiple color combinations. e.g., 8-bit grayscale per LED (red, green, and blue) means that the brightness of each LED can be controlled to 256 “shades.” By mixing the three colors contained in a pixel, 256x256x256 (16.7 million) or 24-bit color depth is achieved.
7. PWM—Pulse Width Modulation, the common method used to control light output from an LED (see Figure 10).
8. Scan period—the period of time a common-line is activated (see Figure 7).
9. Peak forward current—the maximum forward current that the LED is subjected to (see Figure 10).
10. Average forward current—the time averaged current the LED experiences (see Figure 10).

Figure 8. LED matrix indicating common and access lines. R1, G1, and B1 are red, green and blue LEDs, respectively, and are grouped as a single pixel. R2, G2, and B2 form another pixel.

Figure 9. Definition of a pixel. One pixel can contain more than one LED.

Figure 10. Definition of PWM and peak forward current. Average current, Iavg, is Ipeak x D.F where Ipeak is peak forward current and D.F. is duty factor. Generally, higher Iavg results in higher brightness. Hence, the top pulse train will produce a brighter LED than the bottom one.
Display System Structure

This section concentrates on video displays. The drivers used here are constant current latches and intelligent drivers.

Each level contains logic to handle data distribution and generation of control signals. The signal source provides the image data. It can take any form, e.g., VCR, PC graphics card, or a DVD player.

Splitting the screen into several components allows for easier management of data. A typical configuration is a 32x16 LED module. Each panel may consist of 2x3 modules resulting in a 64x48 LED panel. Lastly, the screen can contain 5x5 panels producing a 320x240 LED screen.

Figure 11. Typical structure of an LED standalone display panel. At the top-level is the display screen controller followed by the panel controller which governs the operation of the LED module.

Figure 12. Hierarchy of a display screen—a screen consists of several panels while a panel consists of several modules. D is the amount of data per screen, e.g., in a 320x240 pixel screen with 24-bit color depth, $D = 320 \times 240 \times 24 = 1.84$ million bits. $p =$ number of panels per screen and $m =$ number of modules per panel.
The LED Module

Figure 13. Internal structure of a module controller.

The Module Controller receives the video (image) data and processes it, i.e., color and gamma correction. It will then distribute the data to the common-line and access line drivers. The controller is also responsible for producing the control signals that govern the operation of the drivers. The controller can be implemented with an FPGA or ASIC solution.

The Common-Line Driver acts as a power line switch. When used in combination with the module controller, the common-line driver will energize one common-line at a time - a multiplexing process. Hence, the current sinks attached to the access lines will drive only one row of LEDs at any one time.

The Access-Line Drivers are current sinks in this example of a common-anode LED array configuration. Most drivers incorporate a shift register to allow serial interfacing. The current sinks are preset to a particular value by setting an external trimming resistor. This value will be the peak forward current of the LED. The current sinks are activated by the value of the shift register output. Typically, a '1' will turn the sink on and vice versa. Gray scale generation involves multiple access-line data latching within a single scan period. This is explained further later.
The LED Module

The module controller manages and processes the video data for the module. It has several key functions which are shown in Figure 13 on the previous page. Each is described below:

1. Common-line drive control—manages the multiplexing action of the module. It controls which common-line is to be energized and synchronizes with the access-line drive control to ensure that the correct row data is fed into the access-line drivers.

2. Access-line drive control—determines which LED in the currently energized common-line row is to be turned ON. The TB62474 (Toshiba), for example, has 16 current-sink outputs and a shift register for serial interface. A “1” will turn on the LED and vice-versa.

3. Grayscale control—grayscales are the brightness levels each LED in a pixel can be controlled to reach. A typical full-color system can have up to 256 grayscales. That means that the brightness of each LED can be tuned from minimum to maximum brightness in 256 steps. If each pixel has three LEDs—red, green, and blue—the number of color combinations is 256x256x256 = 16.7 million. Grayscales are achieved by dividing each scan period into 256 time slots (more slots are needed for a larger number of gray levels). Thus, the access-line drivers are latched with data 256 times in a single scan period.

4. Brightness control—brightness control is different from grayscales. Brightness control refers to the control of the display’s overall luminance value, not an individual LED. Manipulating the length of the scan period can control the overall luminance or brightness.

5. Cascade control—generates the control signals used to interface to the other modules.

6. RAM—stores the incoming video data. Usually, a double-buffering method because the video data received still needs to be processed. So, while one buffer is used to drive the display, the second buffer contains freshly received data for processing. These two processes can happen in parallel.

7. Gamma correction—corrects the non-linear transfer function of the LED screen. Put another way, the signal transfer between the electrical and optical components of the display system is non-linear. This leads to expansion of the bright region and compression of the dim region. NTSC and PAL video signals are gamma-corrected prior to transmission to eliminate the non-linear effect of the display. Hence, the display must take this into account to obtain a linear signal transfer function. This topic is further discussed in the next section.

8. Color-space transformation—is necessary with rich-color tiles because its color space is limited compared to full-color tiles and color televisions. For this reason, rich-color tiles cannot be used for display of full-color video. It can be used in limited color video like cartoons. This topic is also further discussed in the next section.
Figure 14. Implementing grayscale control. H = number of rows in a module and V = number of columns in a module. The arrows (in the top-right figure) indicate data latches into the access-line drivers—4 per scan period in this example. The bottom-right figure shows the effect—4 is brightest, 1 is dimmest, and 0 is off.

The two figures on the right are copied from the earlier section. They show the timing sequence used to produce a four grayscale system. Observe from the top right figure that data is latched into the access-line drivers four times in a single scan period. That allows control of the pulse width applied to each individual LED. Four grayscales are produced. Although the example is of a simple 4x4 LED matrix, the same concept applies for a larger array of LEDs. In addition, if more grayscales are required, simply increase the number of data latches to the access-line drivers within a single scan period.
Figure 15. Brightness control by manipulating the length of a scan period. The overall luminance of the display is brighter with longer scan periods (figure on the left).

Figure 16. The concept of Pulse Width Modulation (PWM) for light output control. Manipulating the width of the Scan Period (SP) affects the overall brightness of the display screen (figure on the right). Increasing the number of data latches (time slots) per scan period increases the number of grayscales.

All the data latches (time slots) need to be contained in a single scan period. If the scan period is shortened to reduce the overall brightness of the screen (see Figure 16), the module controller must ensure that all the data latches occur within that shortened scan period.
Figure 17. Interfacing a three-color LED array to the drivers. The TD62M4600FG incorporates four low saturation discrete transistor equipped fly-wheeling diode and bias resistor. This IC can source each LED group by triggering a logic '0' signal to its input. The TB62747 has 16 current -sink outputs (only two outputs are shown above). Either one data line can be dedicated to a driver or three drives can be cascaded in series (shown above). Cascading reduced the number of data lines to one, but requires higher data rate.

Figure 17 is just an example. There are some driver ICs for reference purpose (see Appendix).
Intelligent drivers

The previous section demonstrated the concept of using constant-current latches at the low side of the LED array. Although more expensive, intelligent drivers reduce the complexity of the module controller considerably. As shown below in Figure 18, intelligent drivers manage the generation of grayscales. The module controller, however, still needs to manage the common-line driving. Brightness control is also offloaded to the intelligent drivers. Intelligent drivers are highly recommended for video applications.

![Diagram](image)

Figure 18. Using intelligent drivers.

Intelligent drivers offload a considerable amount of data processing from the module controller. Grayscale and brightness control are built into these drivers; the module controller just needs to feed data into the driver and it will drive the corresponding LED to the brightness specified by the data. For example, an 8-bit intelligent driver has a 256 grayscale capability—TLC5904 (Texas Instruments).

Detailed explanation of these drivers is beyond the scope of this application note. Please refer to the appropriate driver data sheet, e.g., TLC5911 from Texas Instruments. See Appendix B.
Gamma correction

The transfer function between the electrical and optical components of a display system is non-linear. If this non-linearity is not compensated, high brightness regions are expanded and dim regions are compressed. As an example, CRT displays have a gamma of around 0.45. Hence,

\[R_{\text{display}} = R_{\text{in}}^{2.2} \]
\[G_{\text{display}} = G_{\text{in}}^{2.2} \]
\[B_{\text{display}} = B_{\text{in}}^{2.2} \]

where \(R_{\text{in}}, G_{\text{in}}, \) and \(B_{\text{in}} \) are the data input into the display drivers. If we gamma-correct \(R_{\text{in}}, G_{\text{in}}, \) and \(B_{\text{in}} \):

\[R_{\text{in}}' = R_{\text{in}}^{0.45} \]
\[G_{\text{in}}' = G_{\text{in}}^{0.45} \]
\[B_{\text{in}}' = B_{\text{in}}^{0.45} \]

where \(R_{\text{in}}', G_{\text{in}}', \) and \(B_{\text{in}}' \) are the incoming video signals from the video source:

\[R_{\text{display}} = (R_{\text{in}}')^{2.2} = R_{\text{in}}'' \]
\[G_{\text{display}} = (G_{\text{in}}')^{2.2} = G_{\text{in}}'' \]
\[B_{\text{display}} = (B_{\text{in}}')^{2.2} = B_{\text{in}}'' \]

A linear relationship is then be established. Gamma-correction is usually implemented using a look-up table, e.g., PROM or DSP. However, digital circuitry has finite resolution. For that reason, the gamma-corrected data should have a higher resolution. Some screen builders use an 8-bit to 9-bit gamma correction, while others use 10 bits for increased picture quality. T.I. has an intelligent driver that has grayscales up to 10 bits (TLC5911).

Picture quality is a subjective measurement. Display makers usually tune their screens for acceptable brightness, contrast, and gamma before deployment.
Color Space Transformation

Rich-color displays possess a color space that is significantly smaller than full-color displays. If the incoming video signals assume that the display they are driving has a full-color space, the colors on the rich-color display appear compressed. Color-correction can be implemented using a look-up table as well. A detailed description of this subject is, however, beyond the scope of this note.

Data distribution

As mentioned earlier, it is best to break down a display system into the module level and the panel level. Each is responsible for data distribution at its own level. The module controller is responsible for distributing data within its panel and a given panel controller only receives data relevant for that given panel. The controller should ignore all other data. This simplifies the management of data.

There are several methods for distributing data—only the one based on a ring topology is discussed here.

In the model shown in Figure 22, there are several modules attached to a data pipe. The modules are allowed to “see” the data but are not allowed to latch the data into memory. They can only do so if they are in possession of a “token.” This token can be in the form of a pulse travelling along a control line. Once any module receives a token, it immediately latches a chunk of video data. The module then passes on the token to the next module after it receives data for each of its pixels.

Panels can use the same approach for data distribution. Other methods include an Ethernet-based model and an address-line-based data bus.
Appendix A: Choosing a Driver

Table 1. Characteristics of Various LED Drivers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LED brightness consistency</td>
<td>Poor</td>
<td>*</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Individual LED brightness control built-in?</td>
<td>No</td>
<td>*</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Outputs</td>
<td>Single</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
</tr>
<tr>
<td>Forward current consistency</td>
<td>Fair</td>
<td>*</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Maximum forward current</td>
<td>Limited by resistor power rating</td>
<td>Moderate (~50 mA)</td>
<td>Moderate (~90 mA)</td>
<td>Moderate (~90 mA)</td>
</tr>
<tr>
<td>Direct digital interface</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Price [3]</td>
<td>$</td>
<td>$$$</td>
<td>$$$</td>
<td>$$$$$</td>
</tr>
<tr>
<td>Additional comments</td>
<td>Use only when brightness consistency is not critical.</td>
<td>Designed for standard LED packages e.g., 7-segment display and 5x7 dot matrix.</td>
<td>Data usually stored in internal shift register (SIPO [4]). Current control via external resistor.</td>
<td>Brightness of individual LEDs can be digitally controlled (as fine as 1024 brightness levels)</td>
</tr>
</tbody>
</table>

Notes:
* Specifications vary by manufacturer
[2] Constant-current
[3] $: cents/LED array, $$: ~$0.50/output and $$$$: ~$5.00/IC
[4] Serial-in, Parallel-out

Table 2. Choosing the Right Driver for the Application

<table>
<thead>
<tr>
<th>Application</th>
<th>Recommended driver type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backlight array (e.g., keypad lighting)</td>
<td>Limiting resistor</td>
<td>Use only when brightness consistency is not critical and low-cost is required. Otherwise CC latch driver is recommended.</td>
</tr>
<tr>
<td>Standard LED displays</td>
<td>ASSP</td>
<td>E.g., Seven-segment, 5x7 dot matrix and bar graph arrays.</td>
</tr>
<tr>
<td>Discrete lamp arrays</td>
<td>CC latch driver</td>
<td>IC allows microcontroller/processor interface.</td>
</tr>
<tr>
<td>Message panel</td>
<td>CC latch driver</td>
<td>Brightness consistency is critical.</td>
</tr>
<tr>
<td>Video</td>
<td>Intelligent driver</td>
<td>CC latch driver can be used when cost is an issue or if custom functions are required.</td>
</tr>
</tbody>
</table>
Appendix B: Access-line Drivers

CC driver latches and intelligent drivers are recommended for video applications.
ASSPs are used for standard products such as 5x7 tiles and segmented displays.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Type</th>
<th>Functions</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba</td>
<td>TC62D723</td>
<td>CC latch driver</td>
<td>16 output constant current driver with output gain control and PWM grayscale function.</td>
<td>www.toshiba-components.com/products/DriverLSI/LEDDrivers.html</td>
</tr>
<tr>
<td></td>
<td>TC62D748</td>
<td>CC latch driver</td>
<td>16 output constant current LED driver.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC62D749</td>
<td>CC latch driver</td>
<td>16 output constant current LED driver with (output switching high speed version).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TB62747</td>
<td>CC latch driver</td>
<td>16 output channel constant current LED driver.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TB62777</td>
<td>CC latch driver</td>
<td>8 output channel constant current LED driver.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TB62785NG</td>
<td>ASSP</td>
<td>7 segment driver with built in decoders, up to 4 digits control.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC62D722</td>
<td>Intelligent driver</td>
<td>16 output constant current LED driver with the output gain control and PWM grayscale function.</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>TLC5921</td>
<td>CC latch driver</td>
<td>Constant current sink, up to 80 mA, 16 outputs.</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>Instruments</td>
<td>TLC5920</td>
<td>ASSP</td>
<td>For 16x8 dot matrix displays, 16 current sinks and 8 common line drivers, up to 30 mA per output.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLC5904</td>
<td>Intelligent driver</td>
<td>Constant current sink, up to 80 mA, 8-bit grayscale control, 16 outputs, thermal shutdown, output open detection, serial interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLC5905</td>
<td>Intelligent driver</td>
<td>As above except serial data input.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLC5910</td>
<td>Intelligent driver</td>
<td>Constant current sink, up to 80 mA, 10-bit grayscale control, 16 outputs, thermal shutdown, output open detection, parallel interface, 6-bit brightness correction feature.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLC5911</td>
<td>Intelligent driver</td>
<td>As above except 7-bit brightness correction feature.</td>
<td></td>
</tr>
<tr>
<td>NXP</td>
<td>HEF45118</td>
<td>ASSP</td>
<td>For seven segment displays, BCD-to-7 segment decoder driver.</td>
<td>www.nxp.com</td>
</tr>
<tr>
<td></td>
<td>HEF4543</td>
<td>ASSP</td>
<td>For seven segment displays, BCD-to-7 segment decoder driver.</td>
<td></td>
</tr>
<tr>
<td>Maxim</td>
<td>MAX7219</td>
<td>ASSP</td>
<td>For seven segment displays, controls up to 8 digits, serial interface.</td>
<td>www.maxim-ic.com</td>
</tr>
<tr>
<td></td>
<td>MAX7221</td>
<td>ASSP</td>
<td>For seven segment displays, controls up to 8 digits, serial interface.</td>
<td></td>
</tr>
<tr>
<td>Intersil</td>
<td>DM9374</td>
<td>ASSP</td>
<td>As above except with sink outputs.</td>
<td>www.intersil.com</td>
</tr>
<tr>
<td></td>
<td>ICM7217</td>
<td>ASSP</td>
<td>Seven segment display driver, up to 4 digits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICM7218</td>
<td>ASSP</td>
<td>Seven segment display driver, up to 8 digits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICM7228</td>
<td>ASSP</td>
<td>Seven segment display driver, up to 8 digits, on-board display RAM.</td>
<td></td>
</tr>
</tbody>
</table>

Appendix C: Common line Drivers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Type</th>
<th>Functions</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba</td>
<td>TD62M4600FG</td>
<td>Source driver</td>
<td>4 channels, low saturation voltage source driver up to 2 A</td>
<td>www.toshiba-components.com/products/DriverLSI/LEDDrivers.html</td>
</tr>
<tr>
<td></td>
<td>TD62M8600FG</td>
<td>Source driver</td>
<td>8 channels, low saturation voltage source driver up to 2 A</td>
<td></td>
</tr>
</tbody>
</table>